If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-6p-91=0
a = 1; b = -6; c = -91;
Δ = b2-4ac
Δ = -62-4·1·(-91)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-20}{2*1}=\frac{-14}{2} =-7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+20}{2*1}=\frac{26}{2} =13 $
| 4+4n=6-2n | | -3x-9=-4x-3 | | t÷-11=11 | | X+2x=-21 | | -5(1+x)=-3x-11 | | w-14=2 | | 41s^2-22s=0 | | 190=5x-250+40 | | 1+5b=-5+6b | | 7.25*10+5.50x=105.50 | | 0.04(6x-1)=0.2+5 | | v+5v=-3(v-8)+7(v-6) | | x+1/5=9/10 | | -5(2y-3)-y=-4(y-4) | | X-3+2x=12+6x | | 54-7x=20+10x | | 1.025x+2.458=2.458 | | -6+3x+4x=-6 | | m^2-4m-50=0 | | (x-4)^2=81 | | -5x-4x=-6x+9 | | 5+y=45 | | 54-7x=20 | | 5+3(q-4)=-1+2(q+-3) | | x^2+81x-700=0 | | 8(1+5x)=5=13+5x | | 5+2x-5x=-10 | | 11x+3+13x+9=180 | | 6(x+5)+10=11x-5(x-3) | | 34+8b=-7-49b | | -(d-3)=2(3D+1 | | 10-2x-x=-11 |